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Spectral Domain Analysis of Frequency
Dependent Propagation Characteristics of

Planar Structures on Uniaxial Medium
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Abstract —The propagation characteristics of single and multilayered

uniaxial dielectric waveguides and planar structures on uniaxial medium

can be determined by utilizing Hertzian potentials along the optical axis.

The electric and magnetic Hertzian potentials, having components along

the optical axis only, lead to TM and TE modes, respectively, with respect

to that axis. The dyadic Green’s function in Fourier transform domain

(immittance matrix) required to solve for the propagation characteristics of

planar structures on uniaxial medium are derived for all three orientations

of the optical axis. The immittance matrix for all three cases is in the same

form as that for the isotropic medium and hence the known Gsderkirr’s

method can be used to solve for the propagation characteristics of the

structure.

I. INTRODUCTION

T HE STUDY OF the propagation characteristics of

planar inhomogeneous structures on anisotropic sub-

strates has been confined mostly to the case of quasi-TEM

analysis of single or coupled microstrip lines [1 ]–[ 10] since

for this case, the affine transformation renders the problem

to the familiar one of isotropic medium. In most cases of

the inhomogeneous guided wave systems with anisotropic

medium, the formulation of the frequency dependent

boundary value problem becomes quite complicated.

Among many anisotropic materials the uniaxial dielectric,

and gyromagnetic substrates are of interest for various

applications at microwave and higher frequencies. In this

paper, the full wave analysis for an inhomogeneous un-

iaxial medium is explicitly formulated. The results can be

used either to study the effect of such anisotropy on the

properties of planar structures on single or multilayered

uniaxial dielectric medium since some of the substrates

used such as sapphire, Epsilon-10, Polytetrafluoroethylene,

and others [1], [11 ] are uniaxial, or to study the structures

for various applications including electrooptic modulators

[4], [10], [12], and equalization of even- and odd-mode

phase velocities for symmetrical coupled rnicrostrip lines

[7], [8].

Examples of such structures include single and coupled

microstrip lines, slot lines, coplanar lines and waveguides,

and fin lines. Some of the structures such as microstrip

lines do support a quasi-TEM mode at lower frequencies

and become dispersive at higher frequencies, whereas others

such as slot lines can only support hybrid or higher order

modes.

One of the most efficient and accurate computational
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methods for determining the properties of such structures

on isotropic medium is the use of the immittance function,

and Galerkin’s method in Fourier transform domain [ 13]–

[18]. It is shown in this paper that the immittance matrix

function for such structures on a single uniaxial substrate

or multilayered uniaxial and isotropic or other uniaxial

medium can be derived in exactly the same form as the one

for isotropic medium rendering itself to computational

solutions by utilizing the same Galerkin’s method. It is

found that the problem can be most conveniently for-

mulated in terms of both magnetic and electric Hertzian

potentials having components along the optical axis only.

This corresponds to constructing the solutions for field

components in terms of TE and TM modes with respect to

the optical axis. Otherwise, the problem becomes similar to

that of general biaxial medium which is hardly tractable

[19]. The immittance matrix for all three cases of the

orientation of the optical axis are derived in Section III for

the case of inhomogeneous single layer medium after a

brief review of the formulation of the boundary value

problem at hand in terms of the Hertzian potentials in

Section II. The immittance matrix derived for all three

cases of the orientation of the optical axis reduces to the

known expressions if the medium is assumed to be iso-

tropic and leads to the static Green’s function from affine

transformation for the static boundary value problem.

II. FORMULATION OF THE PROBLEM IN TERMS OF

THE HERTZIAN POTENTIAL FUNCTIONS

The solution for all the electric and magnetic field com-

ponents required to satisfy the boundary conditions at the

interface of uniaxial media with other isotropic or uniaxial

media (with or without filament sources at the interface)

can be derived from the electric and magnetic Hertzian

potentials having components along the optical axis only.

The magnetic Hertzian potential along the optic axis gives

a solution for electric field E with no component along that

direction while the electric Hertzian potential directed along

the optic axis leads to a solution for magnetic field H
having no uniaxial direction component. Starting from the

Maxwell’s equations in source-free regions characterized by

p =pO and

[Cx o 01
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with two of the diagonal terms equal for the uniaxial

medium depending on the orientation, the fields are de-

rived in terms of the Hertzian potentials directed along the

optical axis [20]. Let dt be the unit vector along the optical

axis t($ is x or y, or z) with a dielectric constant e, along

that axis and Cz along the two axes normal to the optical

axis. Then, for harmonically oscillating field case ( eJ”*

variation), the electric and magnetic fields can be found

from [20].

a) The ordinary wave is found from magnetic Hertzian

potential Tfi as

E= – japov X Wh (1)

H= VXVXTh (2)

where m~= Wh6C is the solution of

V%’rh +u2poc27Th =0. (3)

b) The extraordinary wave is found from electric

Hertzian potential w, as

E= (.i.IZpoqpe+ ~VV “we (4)
.

H= jueov X me (5)

where W, = rr,d$ is the solution of

C,— C2 8%, _v%,+(&f,n-e +— —–o.
fz a’g’2

(6)

From the above equations we see that the magnetic

Hertzian potential along the optical axis which is the

solution of (3) gives solutions with electric field E having

no component along the optical axis while the electric

Hertzian potential along the optical axis gives a solution

for magnetic field H with no components along that direc-

tion.

For a given uniform guided wave system along the

z-direction, we can assume an e–JB= type variation along

that direction. The dispersion characteristics for that sys-

tem then are to be found by applying the boundary condi-

tions for electric and magnetic fields derived from (1)

through (6). For cylindrical dielectric waveguides with the

optical axis along the z-direction [21 ] and slab guides with

the optical axis along any of the three directions, E and H
are readily found from (1), (2), (4), and (5) in terms of n=

and n~, which are the solutions of (3) and (6). Applying the

boundary conditions for tangential and normal compo-

nents of the fields then leads to the dispersion equation for

various modes. For planar structures on an inhomogeneous

uniaxial medium, the solution leads to the expression for

the tangential components of the electric fields at the

boundaries in terms of the unknown current sources. In the

Fourier transform domain this relationship is expressed in

terms of the desired impedance functions which can then

be used to compute the propagation characteristics by

using Galerkin’s method.

It should be noted that for general multilayered struc-

tures with different orientations of the optical axis in each

region the procedure calls for constructing the solution for

fields in terms of the two Hertzian potentials defined along

the optical axis for each region.

.4Z??ZZ-.w
Fig. 1. Planar structure on an uniaxial medium.

III. SPECTRAL DOMAIN ANALYSIS

In the Fourier transform domain, all the variables are

transformed with respect to x according to

J (a, y) =Jm+(x, y)e-Jaxdx (7)
—’x

then

The immittance matrix function for the structures is then

derived by writing the solutions for the field components

and applying the boundary conditions. For example, the

desired impedance matrix sought with filament current

sources at one interface (y = d) only is given as

(8)

This matrix function is derived in this section for lines

deposited on a single uniaxial medium of height d with a

ground plane, e.g., single or multiple coupled microstrip

lines, for the three cases of the orientation of the optical

axis in Fig. 1.

A. Optical Axis Normal to the Interface (CY= cl, c.= c: =

62)

For this case, m~= n~iiy and v= = re6Y, and in the Four-

ier transform domain, tie, %h and the tangential field com-

ponents are the solutions of the following equations in the

dielectric and air medium.

1) Uniaxial Medium (Region I), y <d:

dzfikl(a, y)

dyz
-y;tih,(a,y)=o

d2ti,1(a, y)

dy2
-y:fie,(a, y) =0

e. d+=,
SX1(a, y)= –ja— — + Ly@7h,

C2 dy

co dtiel
izl(a, y)= –j&-- qqyxfik ,

dfi~l
IIX1(a, y)= – coco~fi,l – ja—

dy

d+~,
E,, (a, y)=~cltofi.1 – W=.

(9a)

(9b)

(lOa)

(lOb)

(Ioc)

(lOd)
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where

2) Air Medium (Region II), y > d:

d%k,((x, y)

dyz
‘y&kZ(a~ Y) ‘O

dztie~(a, y)

dy2
-y;tiez(a, y) =0

dtiez
fixz((x, y)= –ja — + Ly@3fhz

dy

dti,z
~zz(a, y) = – j~~ – tiPoatikz

dtihz
R,z(a, y)= –uo~fi,z – ja—

dy

dfihz
12zz(a, y) =C+@ez – j~~

k: ~ U2VOC0

kf ~ Ozpocl

k; ~ U21.LOC2

~:~az+~z–k;

~~$az+~z–k:

and

yj~~(a2+/3-k~).
61

The solutions for potentials as given by (9) and (11)

fih,(a, y)=~(a) sinhyhy+ A’(a) coshyhy

ti,l(a, y) =C(a) coshyey+ C’(a) sinhy, y

‘ifiz(a, y) = ~(~)e-’o(~-d)

fiez(a, y) = D(a)e–Yo(-”–d).

(ha)

(llb)

(12a)

(12b)

(12C)

(12d)

are

(13a)

(13b)

(13C)

(13d)

Substituting these into expressions for field components as

given by (10) and (12) and applying the boundary condi-

tions as given by

6Y XE1 =0,

d} X( E1– E2) =0,

tip X( H,- H2)=J,

aty=O (14a)

aty=d (14b)

the surface current density at y = d

(14C)

leads to A’(a)= C’(a)= O from (14a) and the four equa-

tions for A(a), B(a), C(a), and D(a) from (14b) and (14c)

in terms of ~.( a, d) and ~z(a, d) as given by

The above equations are much easier to manipulate than

the ones derived for the other two orientations of the

optical axis to be considered after this section, and are

readily solved for the coefficients A( a)– D( a) to give

‘(a) = sin~YhdB(a) (16)

(17)c(a)= –~ ‘0 D(a)
co ye sinh y,d

– j@X(a, d)+ja~(a, d)

‘(a)= (az+~z)(yo+yh cothyhd)
(18)

D(a) =
a~X(a, d)+~~(a, d)

r , . (19).

[ Iti(az+~z) (O+cz: cothy=d
t’

It should be noted from (16) and (17) that for this case the

two TE and TM modes with respect to the y-axis are

decoupled as is the case for isotropic medium inherently

implied in Itoh’s analysis of such structures utilizing the

transverse equivalent transmission line method for multiple

layer isotropic medium [18], and that decoupling is the

merit unique to this orientation.

The electric field components at the interface, y = d, are

given by

~X(a, d) = Upo@(a)+ jayoD(a) (20a)

~Z(a, d) = –CMOpoll(a)+ jj3yoD(a). (20b)

Substituting for B(a) and D(a) from (18) and (19) leads to

the elements of the impedance matrix defined by (8) and

are given by

[

Q2Po@ + @YoY,

1
— (21b)

gl g2

“[ —cdzpod + B2YoYe
~ZZ(a, ~,d)= ] 1(21C)

O(az+pz) gl gz

where

g, ~ y.+ yh coth yhd

The above equations for the impedance functions reduce

to those for the isotropic medium case when f ~= 6z = <0(,,

upo~ sinh y~d — Wlob – ja ~ y, sinh yed – jay.

[

– j/3yJ, cosh yhd – jbyo auto cosh y=d — aloco

– jay~ cosh ykd – jay. — tico~ cosh y,d UCop

A(a) o

B(a) . 0 . (15)

c(a) –~,(a, d)

D(a) j(a. d)
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and lead to the Green’s function from the known affine

transformation for the static case.

For the isotropic medium we see that

y;=y~=a2+fi2-k~

Then, the matrix elements ZXX, ~Xz, and 2== reduce to the

ones obtained by Itoh [18].

For the static case, as u + O, we get

y~=y:=azandyj=~az.

Considering a surface charge ~istribution- as given by p =

–(v. J)/jti and potential @(a, d)= EX(a, d)/ja [22]

leads to the static Green’s function in Fourier transform

domain. The potential &(a, d) is found to be

(a, d)=

1

j/a

[

~(a, d). (22)

l+~coth ~ ad

1191

2) In Region 11, y > d: From fikz(a, y) = B(a)e-y”cv-dj

and fi=z(a, y) = D(a)e–Yo~~–d)

ixz(a, y) = D(a)(k~ –az)e–yo(~-d) (24a)

Ez2(a, y) = – B(a)jtipOyOe-Yo( Y-d) – l)(a)a~e-yo(’-d)

(24b)

~X2(a, y) =B(a)(k~ –az)e–yo(~–d) (24c)

~ZZ(a, ~) = – B(a)a~e-YO(~–d) + ~(~)j~foyoe–yo~.~–d)

(24d)

where for this case

y~%z+~z-k:, y,z$ 5a2+j32-k~
62

and

y&a2+@-k~.

Applying the boundary conditions as

(14c) leads to the following equation

A(a) -D(a):

jtipOy. sinh ykd j~poyo — @~ sinh y,d @

o 0 (kE22)sinhyed‘aZ-k;)
–a~ cosh yk d a~ – jticoy, cosh y,d – ju~oyo

(k~-az)coshy,d -(k~-az) o

The expression in square brackets is the Green’s function

for planar structures such as open microstrip lines on a

uniaxial medium having the optical axis normal to the

interface and translates the problem to the isotropic case

with the known affine transformation c = @ and y’

= (~ [4].

B. Optical Axis Along x-Direction (CX = c,, tY = c, = C2)

For this case WA= ThtiX and m,= T,dX. The tangential

field components are found from (1) through (6) and are

given by the following equations in the Fourier transform

domain.
1) In Region 1, y <d: From tihl(a, y)= A(a) coshy~~

and fi,l(a, y)= C(a) sinhy. y

fiY1(a,y )= C(a)(k~–~a2) sinhyey (23a)

~z, (a, y) =A(a)~pOyh sinhy~y– C(a)aj3~ sinhy,y

(23b)

tiX, (a, y)= A(a)(k~- az)coshy~, y (23c)

fi,l(a, y)= – xl(a)a~ cosh YJIY– C(a)j~coy, cosh y,y.

(23d)

o

A(a)

B(a)

c(a)
D(a)

—

—

given by (14b) and

for the coefficients

o

0

L(cI, d)

(25)

Even though this matrix form appears to be simpler than

the one for the previous case, the ‘manipulations ‘required

to find the solution for the coefficients and the spectral

domain impedance functions are more involved since the

two TE and TM modes with respect to the optical axis are

coupled for this orientation. The procedure, however, is

straightforward, and solving (25) for A( a)– D( a) and sub-

stituting in the expression for tangential electric field com-

ponents at y = d leads to the desired spectral domain

impedance matrix where elements are found to be

~X,(a, @,d)=~=X(a, ~,d)=+(k:–a2)F2

= + (@gll– Jwoy0g12)

-%(~*B>d) ‘~(Jwo@’l–c@l)
where

[

(k; - az) tanh Y)ld
gll ‘j~po Y. +Y~

(k; -a’)

(26a)

(26b)

(26c)
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and

[

,2 (k:-a’)
g22 & – ju(o y.+ ye— 1‘o(k; - ~2) cothye~

jtipOy~ tanh y~d

“ 2 (k~yaz) ‘“ + (k~-a’) ’22

jupoyh tanh y~d

3+ (k:ya’)g” + (k~-a’) ’21”

The above impedance functions reduce to the ones for

the isotropic medium case when 6~= c~ = f if we formulate

the isotropic medium problem in terms of TE and TM

modes with respect to the x-axis. In addition, as o + O, the

matrix leads to the static Green’s function (from the corre-

sponding affine transformation) as given by (22) with c~

and c‘ interchanged.

C. Optical Axis Along z-Direction (eY = CY= Cz, e== cl)

For this case tr~ = ~~ii, and T,= n-etlz, where +, and ti~

are solutions of (in the spectral domain)

d 2ti~,

dy2
— – y;eh, = o

d2fie1

dy2
— –y:??,, =0, in Region 1, y < d

d%~z
— –y$?h2 =0

dy2

d2ti,2
– y;fie’ = o, in Region H, y > d

dy’

where for this case

y~~a2+~2–k~

y~&2+~~’_kf
~~

y:~a’+~’–k~.

and

(27)

(28)

The procedure to find the spectral domain impedance

matrix functions is very similar to the previous case (Sec-

tion III-B) and also to the conventional approach used for

the isotropic problem in terms of TE and TM modes with

respect to the z-axis [13], [14]. The two modes in this case

also are not decoupled. Writing the solution for fields in

terms of unknown coefficients and applying the boundary

conditions leads to the following impedance functions:

ZXX(a, ~, d) = [ japOyOF1 –a~F2]/A (29a)

~Xz(a, ~,d)=~ZX((x, ~,d)=(k~-~2)

.F2/A = –( jcopoyog12 + a/3g,, )/A (29b)

~Zz(a, ~,d)=(k:–&)gl, /A (29c)

where

and

A : g,, g22 – g,2g2,

JWoY;, tanh yh d

“ g (k;!j)g’2- (k;-~’) ’22

jupoyh tanh y~d
(k: _~2) ’21”’22 (k~$’)gll+ -

Again, it is seen that for c, = C2= .c(yh = ye = y) the above

matrix functions reduce to the known expressions for the

isotropic medium case [ 13]–[ 15] and lead to the spectral

domain Green’s function for ((22) with c, replaced by C2)

the static isotropic medium case having ~ = ~‘ when u -0.

IV. CONCLUDING REMARKS

It is shown that the propagation characteristics of inho-

mogeneous guided wave structures with uniaxial dielectric

media can be studied in a unified convenient manner by

utilizing the auxiliary electric and magnetic Hertzian

potential functions having components along the optical

axis only. This corresponds to formulation of the boundary

value problem in terms of the TE and TM modes with

respect to the optical axis. For the case of the optical axis

normal to the interface, the two modes (also called LSM

and LSE) are decoupled. In order to illustrate the proce-

dure, the derivation and results are presented for a single

layer uniaxial medium with a ground plane for all three

orientations of the optical axis. The spectral domain immit-
tance functions required to solve for the dispersion char-

acteristics of other planar structures are found by following

the same steps. Other propagation characteristics such as

characteristic impedance is then found in terms of the

fields and the phase constant. No attempt was made to

include the numerical results in this paper since the compu-

tation methods used to solve (21), (26), and (29) for the

dispersion characteristics are the same as those for the

isotropic medium case [13], [17].

It should be noted that even though the main emphasis

of the paper was the formulation of the eigenvalue problem

for general planar waveguide structures, the procedure

given in Section II is a general one and can be applied to

various waveguides and other boundary value problems

with uniaxial media.
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