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Spectral Domain Analysis of Frequency
Dependent Propogation Characteristics of
Planar Structures on Uniaxial Medium
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Abstract —The propagation characteristics of single and multilayered
uniaxial dielectric waveguides and planar structures on uniaxial medium
can be determined by utilizing Hertzian potentials along the optical axis.
The electric and magnetic Hertzian potentials, having components along
the optical axis only, lead to TM and TE modes, respectively, with respect
to that axis. The dyadic Green’s function in Fourier transform domain
(immittance matrix) required to solve for the propagation characteristics of
planar structures on uniaxial medium are derived for all three orientations
of the optical axis. The immittance matrix for all three cases is in the same
form as that for the isotropic medium and hence the known Galerkin’s
method can be used to solve for the propagation characteristics of the
structure.

1. INTRODUCTION

HE STUDY OF the propagation characteristics of

planar inhomogeneous structures on anisotropic sub-
strates has been confined mostly to the case of quasi-TEM
analysis of single or coupled microstrip lines [1]-[10] since
for this case, the affine transformation renders the problem
to the familiar one of isotropic medium. In most cases of
the inhomogeneous guided wave systems with anisotropic
medium, the formulation of the frequency dependent
boundary value problem becomes quite complicated.
Among many anisotropic materials the uniaxial dielectric,
and gyromagnetic substrates are of interest for various
applications at microwave and higher frequencies. In this
paper, the full wave analysis for an inhomogeneous un-
iaxial medium is explicitly formulated. The results can be
used either to study the effect of such anisotropy on the
properties of planar structures on single or multilayered
uniaxial dielectric medium since some of the substrates
used such as sapphire, Epsilon-10, Polytetrafluoroethylene,
and others [1}, [11] are uniaxial, or to study the structures
for various applications including electrooptic modulators
[4], [10], [12], and equalization of even- and odd-mode
phase velocities for symmetrical coupled microstrip lines
(7], [8].

Examples of such structures include single and coupled
microstrip lines, slot lines, coplanar lines and waveguides,
and fin lines. Some of the structures such as microstrip
lines do support a quasi-TEM mode at lower frequencies
and become dispersive at higher frequencies, whereas others
such as slot lines can only support hybrid or higher order
modes.

One of the most efficient and accurate computational
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methods for determining the properties of such structures
on isotropic medium is the use of the immittance function,
and Galerkin’s method in Fourier transform domain [13]-
[18]. It is shown in this paper that the immittance matrix
function for such structures on a single uniaxial substrate
or multilayered uniaxial and isotropic or other uniaxial
medium can be derived in exactly the same form as the one
for isotropic medium rendering itself to computational
solutions by utilizing the same Galerkin’s method. It is
found that the problem can be most conveniently for-
mulated in terms of both magnetic and electric Hertzian
potentials having components along the optical axis only.
This corresponds to constructing the solutions for field
components in terms of TE and TM modes with respect to
the optical axis. Otherwise, the problem becomes similar to
that of general biaxial medium which is hardly tractable
[19]. The immittance matrix for all three cases of the
orientation of the optical axis are derived in Section III for
the case of inhomogeneous single layer medium after a
brief review of the formulation of the boundary value
problem at hand in terms of the Hertzian potentials in
Section II. The immittance matrix derived for all three
cases of the orientation of the optical axis reduces to the
known expressions if the medium is assumed to be iso-
tropic and leads to the static Green’s function from affine
transformation for the static boundary value problem.

1I. FORMULATION OF THE PROBLEM IN TERMS OF
THE HERTZIAN POTENTIAL FUNCTIONS

The solution for all the electric and magnetic field com-
ponents required to satisfy the boundary conditions at the
interface of uniaxial media with other isotropic or uniaxial
media (with or without filament sources at the interface)
can be derived from the electric and magnetic Hertzian
potentials having components along the optical axis only.
The magnetic Hertzian potential along the optic axis gives
a solution for electric field E with no component along that
direction while the electric Hertzian potential directed along
the optic axis leads to a solution for magnetic field H
having no uniaxial direction component. Starting from the
Maxwell’s equations in source-free regions characterized by
[t =g and
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with two of the diagonal terms equal for the uniaxial
medium depending on the orientation, the fields are de-
rived in terms of the Hertzian potentials directed along the
optical axis [20]. Let 4, be the unit vector along the optical
axis (£ is x or y, or z) with a dielectric constant ¢, along
that axis and €, along the two axes normal to the optical
axis. Then, for harmonically oscillating field case (e’/**
variation), the electric and magnetic fields can be found
from [20].

a) The ordinary wave is found from magnetic Hertzian
potential m, as

(1)

E=— jop,v Xm,

H=vXv X, (2)
where @, = m,4, is the solution of
Vv 2w, + e ,m, = 0. (3)

b) The extraordinary wave is found from electric
Hertzian potential m, as

— .2 £ .
E—(;,)[.Loeofrre—k€ vVv-m,
2

4)
()

H= jwe,V X,
where @, = 7,4, is the solution of

_ 2
€ —€, 0°m,

o ©)

From the above equations we see that the magnetic
Hertzian potential along the optical axis which is the
solution of (3) gives solutions with electric field E having
no component along the optical axis while the electric
Hertzian potential along the optical axis gives a solution
for magnetic field H with no components along that direc-
tion.

For a given uniform guided wave system along the
z-direction, we can assume an e % type variation along
that direction. The dispersion characteristics for that sys-
tem then are to be found by applying the boundary condi-
tions for electric and magnetic fields derived from (1)
through (6). For cylindrical dielectric waveguides with the
optical axis along the z-direction [21] and slab guides with
the optical axis along any of the three directions, E and H
are readily found from (1), (2), (4), and (5) in terms of =,
and ar,, which are the solutions of (3) and (6). Applying the
boundary conditions for tangential and normal compo-
nents of the fields then leads to the dispersion equation for
various modes. For planar structures on an inhomogeneous
uniaxial medium, the solution leads to the expression for
the tangential components of the electric fields at the
boundaries in terms of the unknown current sources. In the
Fourier transform domain this relationship is expressed in
terms of the desired impedance functions which can then
be used to compute the propagation characteristics by
using Galerkin’s method.

. It should be noted that for general multilayered struc-
tures with different orientations of the optical axis in each
region the procedure calls for constructing the solution for
fields in terms of the two Hertzian potentials defined along
the optical axis for each region.

Vi, + wpge, 7, + =0.
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Fig. 1. Planar structure on an uniaxial medium.

III. SPECTRAL DOMAIN ANALYSIS

In the Fourier transform domain, all the variables are
transformed with respect to x according to

J e y)= [ W,y (M

then
1 oo o
Y(x, )= —2_77./‘004’ (a, y)er**da. |

The immittance matrix function for the structures is then
derived by writing the solutions for the field components
and applying the boundary conditions. For example, the
desired impedance matrix sought with filament current
sources at one interface (y =d) only is given as

Zxx(a’lg’d) ~xz(a’lB’d)
sz(a’ﬁ7d) ~zz(a9lB’d)

Ex(a,d)
E(a,d)

J(a,d)
J (o, d)

(8)

This matrix function is derived in this section for lines
deposited on a single uniaxial medium of height d with a
ground plane, e.g., single or multiple coupled microstrip
lines, for the three cases of the orientation of the optical
axis in Fig. 1.

A. Optical Axis Normal to the Interface (e, =€, €, =¢, =
€)

For this case, m, = m,d, and @, = 7,4,, and in the Four-
ier transform domain, 7,, #, and the tangential field com-
ponents are the solutions of the following equations in the
dielectric and air medium.

1) Uniaxial Medium (Region 1), y <d:

d*wy(a,y)
EE) () =0 (%)
Ly .
LA
: 2 _ngel(aa y):O (9b)
dy
l — . € dﬁel -
E (a,y)= _JO‘Z; dy + wpo By, (10a)
~ € dT, .
Ezl(a’ y)=—J ;f dyl — WhoQT, (IOb)
~ . . dFy,
Hxl(aa y): _wEOIBWel-J‘x d (IOC)
Ly
5 - L, ATy,
Hzl(aa)’):w"‘fowel—lﬂ“‘iy— (10d)
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2) Air Medium (Region I1), y > d:

(e, y) .
Lz__Yoz”hz(asJ’):O (11a)
dy
d*i (e, y) 5.
Bt — i, (e, y) =0 (11b)
dy
. . dF,, .
Exl(a’ y) = T ja dy + wpo By, (123)
. L df,, _
E,y(a, y)=-— ]'Bd—y T WAy, (12b)
- _ _ dfy,
Ao, y)= —weobfy— ja72  (120)
y
. . _di,
Ao y) = wegai,, — B2 (124)
ly
where .
kg = @’oeq
ki = 0’poe)
k3 = wpoe;
REa+p k2
v} 224+ B*—k3
and
v2 = E—Z-(az-l—ﬁz—klz).

1
The solutions for potentials as given by (9) and (11) are
#,,(«, y) = A(«) sinh v,y + A'(a) coshy,y (13a)
#,,(a, y)=C(a) coshy,y+C’(a) sinhy,y (13b)
Fo(a, y) = B(a)e 10 =D (13¢)
fiep(@, p) = D(a)e 107 (13d)

Substituting these into expressions for field components as
given by (10) and (12) and applying the boundary condi-
tions as given by

a,xE=0, aty=0 (14a)
a,X(E,—E,)=0, aty=d (14b)
a,x(H,— H,)=J, the surface current density at y = d
(14c)

leads to A’(a)=C’(«) =0 from (14a) and the four equa-
tions for 4(a), B(a), C(a). and D(a) from (14b) and (14c¢)
in terms of J (a. d) and J(«, d) as given by
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The above equations are much easier to manipulate than
the ones derived for the other two orientations of the
optical axis to be considered after this section, and are
readily solved for the coefficients A(a)- D(a) to give

A()= g B(a) (16)

Ca)= —j—oﬁﬁ@mw (17)
_ ],8.];(0[, d)+ jajz(ar d)

B(Ol)— (042+,82)(70+Yh coth Yhd) (18)

D(a)= af (a,d)+BJ(a,d) (19)

w(a?+B%)| e+ ez%q coth v,d

It should be noted from (16) and (17) that for this case the
two TE and TM modes with respect to the y-axis are
decoupled as is the case for isotropic medium inherently
implied in Itoh’s analysis of such structures utilizing the
transverse equivalent transmission line method for multiple
layer isotropic medium [18], and that decoupling is the
merit unique to this orientation.

The electric field components at the interface, y =d, are
given by

E(a,d)=wpoBB(a)+ jovD(a) (20a)
E(a,d)= —awpoB(a)+ jByyD(a).  (20b)

Substituting for B(«) and D(«) from (18) and (19) leads to
the elements of the impedance matrix defined by (8) and
are given by

. _ R N 3 }
Z. (a,B.d) w(a2+,82)[ P (21a)
~ I
Z.(a,p.d)=2, (e, B,d) (o + B2)

|:(.02,Uz0a18 + aBYOYe] (21b)

&1 &2

) R, — e’ ,Bzvove]
Zzz(a’ﬁ’d)_w(a2+’82)[ £ * &> (210)
where

O
g1 = Yo T v, coth v, d
JaY
8, = €Y, T €57, coth v,d.

The above equations for the impedance functions reduce
to those for the isotropic medium case when €, =€, = ¢

s

. € . . 17 ] [ 1
— awp, sinh y,d awt,  — ],86—0 y,sinhy,d — jBY, || A(«) 0
2
. . € . .
wpof sinhyv,d —owp,B  — ]ae—oye sinhy,d — jay, || B(e) | = 0 ] (15)
2
—JjBy,coshy,d — jBy, awey coshy,d  —awe, || Cla) —J(a,d)
| —Jjay,coshy,d  — jay, ~ we,B cosh y,d weof || D(a) | J(a.d) |
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and lead to the Green’s function from the known affine
transformation for the static case.
For the isotropic medium we see that

Y=y =+ Bk
and
Yo =+ B —kj.

ZwZ

xz>

Then, the matrix elements and Z,, reduce to the
ones obtained by Itoh [18].

For the static case, as w — 0, we get

€
y2=v{=da*andy>= :2-012.

1
Considering a surface charge distribution as given by p =
~(v-J)/jw and potential ¢(a, d)=E(a, d)/jo [22]
leads to the static Green’s function in Fourier transform
domain. The potential ¢(ea, d) is found to be

/e
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2) In Region II, y > d: From 7,,(a, y) = B(a)e Yo=4)
and 7,,(e, y) = D(a)e 1V~

Eo(a, y) = D(a)(k}— a? )0~ (24a)

Ez2(a’ y) = - B((x)jw‘uoyoe’Yo(y_d) - D(a)aﬁe"‘/o()’"d)
(24b)

Ho(a. y) = B(a)(k§— o )e 100 (24¢)

H,)(a, y)= — B(a)aBe "0~ + D(a) jweyyye o>~
(24d)

where for this case

Fay pay
Vi=at+ B —k3, 2=

e

€
L a? +B8%— k12
€

and

Py
REPH -,

(a, d)= - pla,d). (22)
2 .
1+ye,e, coth N Z ad Applying the boundary conditions as given by (14b) and
(14c) leads to the following equation for the coefficients
A(a)-D(a):
Jwpgy, sinh y,d JoBYo —a ? sinh y,d af Ala) 0
2
€ .
0 0 (kg—;oﬂ) sinhy,d (a®>—k3) || B(a) | = 0 (25)
—af cosh vy, d af — jweyy, cosh y,d — jweyy, || Cla) —J(a,d)
~(k%—ozz) cosh v,d —(k%—az) 0 0 ] D(a) J(a,d)

The expression in square brackets is the Green’s function
for planar structures such as open microstrip lines on a
uniaxial medium having the optical axis normal to the
interface and translates the problem to the isotropic case
with the known affine transformation €= /e, and y’

=Ve, /¢, [4].

=€)
For this case m,=m,d, and =,=7,4,. The tangential
field components are found from (1) through (6) and are
given by the following equations in the Fourier transform
domain.
1) In Region I, y<d: From #,(«, y)= A(a) coshy,y
and #,,(a, y) = C(e) sinhy, y

B. Optical Axis Along x-Direction (€, = €;, €, =€,

E’xl(a,y):C(a)(kS—z—oaz) sinh y, y (23a)
2

- . € .
E,\(a. y) = A(@)wpqy, sinh v,y — C(a)af = sinh v,y
(23b)
H (a,y)= A(a)(k}—a?) cosh v,y (23¢)
H (a,y)= — A(a)ap cosh v,y — C(a) jwe,y, cosh v, .
(23d)

Even though this matrix form appears to be simpler than
the one for the previous case, the manipulations required
to find the solution for the coefficients and the spectral
domain impedance functions are more involved since the
two TE and TM modes with respect to the optical axis are
coupled for this orientation. The procedure, however, is
straightforward, and solving (25) for A{a)- D(«) and sub-
stituting in the expression for tangential electric field com-
ponents at y=d leads to the desired spectral domain
impedance matrix where elements are found to be

. (a®— k2
Zxx(a’B»d):——A—_O_)gll (26&)
. . 1 5
sz(aaﬁ?d):sz(a’B*d):K(ka—a2)F2
1 .
= A (aBgi — joroYo8iz) (26b)
- |
Z.(a, B, d) = (jopoyo Fy — aBF,) (26¢)
where
P (k3 —a?)
&1 T Jwhy Y0+Yh(k—§__az—)tanh Ynd
A (kg—a?)
812 ™ 82 Zaﬁ[l‘m
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and
A . € (k(z)_ 2)
= — jwe +v,—= coth vy, d
82 J®@€| Yo € (k%—az)
VN
A= 81182~ 81280
& af Jjopgy, tanh v, d
F = g g
Tl e
aff Jjwioy, tanh y,d
Fzé &n &o1-
(2 — ) (k2 —a?)

The above impedance functions reduce to the ones for
the isotropic medium case when €, = ¢, = ¢ if we formulate
the isotropic medium problem in terms of TE and TM
modes with respect to the x-axis. In addition, as w — 0, the
matrix leads to the static Green’s function (from the corre-
sponding affine transformation) as given by (22) with ¢,
and e, interchanged.

C. Optical Axis Along z-Direction (e, =€, = €,,€, = ¢€,)

For this case m, = 7,4, and w,= 7,4, where %, and 7,
are solutions of (in the spectral domam)
d*#,, )
— v, 7, =0
dy2 ' Tt
d*#, . .
—y2,=0, inRegionl,y<d  (27)
dy*
dzﬁhz 2~
— Y, =0
dyz 0"h2
d*F, . . .
— = —Yy%,,=0, inRegionIl,y>d (28)
dy

where for this case
Y2 = o+ 82—k}
Ye—a“r .32
and
24 2 2 2
Yo =a-+ 87— kj.

The procedure to find the spectral domain impedance
matrix functions is very similar to the previous case (Sec-
tion III-B) and also to the conventional approach used for
the isotropic problem in terms of TE and TM modes with
respect to the z-axis [13], [14]. The two modes in this case
also are not decoupled. Writing the solution for fields in
terms of unknown coefficients and applying the boundary
conditions leads to the following impedance functions:

Zxx(a 8, d)—[J‘*’Mo'Yo aﬁFz]/A (293-)
Z(a,p,d)=2Z,(a,8.d)=(k3—B?)

B, /A= _(jwﬂoYoglz+aBg11)/A (29b)

Z,(a,B,d)=(ki—B")g, /A (29¢)
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where

(ke — )

—B?)
]
— B2
— B

Yo T Yo 55y

(
(
“ (k

=
g = T J@ho

tanh vy, a’}

812 =

)
)

&~ J"-’fo Yot Ye

2
0
2
2

coth yed]

A=g1180 " 818

of _ Jwpoy, tanh v, d

Flé 12 5 5
(Z-p)%" (k2—p?)

&2

and

- JwigY, tanh v, d
(3-8 (k3-p)
Again, it is seen that for ¢, =¢, =¢(y, =y, = v) the above
matrix functions reduce to the known expressions for the
isotropic medium case [13}-[15] and lead to the spectral

domain Green’s function for ((22) with ¢, replaced by ¢,)
the static isotropic medium case having € = e, when w — 0.

a_ —aB

F, &a1-

IV. CONCLUDING REMARKS

It is shown that the propagation characteristics of inho-
mogeneous guided wave structures with uniaxial dielectric
media can be studied in a unified convenient manner by
utilizing the auxilliary electric and magnetic Hertzian
potential functions having components along the optical
axis only. This corresponds to formulation of the boundary
value problem in terms of the TE and TM modes with
respect to the optical axis. For the case of the optical axis
normal to the interface, the two modes (also called LSM
and LSE) are decoupled. In order to iilustrate the proce-
dure, the derivation and results are presented for a single
layer uniaxial medium with a ground plane for all three
orientations of the optical axis. The spectral domain immit-
tance functions required to solve for the dispersion char-
acteristics of other planar structures are found by following
the same steps. Other propagation characteristics such as
characteristic impedance is then found in terms of the
fields and the phase constant. No attempt was made to
include the numerical results in this paper since the compu-
tation methods used to solve (21), (26), and (29) for the
dispersion characteristics are the same as those for the
isotropic medium case [13], [17].

It should be noted that even though the main emphasis
of the paper was the formulation of the eigenvalue problem
for general planar waveguide structures, the procedure
given in Section II is a general one and can be applied to
various waveguides and other boundary value problems
with uniaxial media.
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